MODELING FLEXURAL STRENGTH OF EPS LIGHTWEIGHT CONCRETE USING REGRESSION, NEURAL NETWORK AND ANFIS

Authors

  • A. Sadrmomtazi
  • J. Sobhani
  • M. A. Mirgozar
  • M. Ejtemaei
Abstract:

Lightweight concrete (LWC) is a kind of concrete that made of lightweight aggregates or gas bubbles. These aggregates could be natural or artificial, and expanded polystyrene (EPS) lightweight concrete is the most interesting lightweight concrete and has good mechanical properties. Bulk density of this kind of concrete is between 300-2000 kg/m3. In this paper flexural strength of EPS is modeled using four regression models, nine neural network models and four adaptive Network-based Fuzzy Interface System model (ANFIS). Among these models, ANFIS model with Bell-shaped membership function has the best results and can predict the flexural strength of EPS lightweight concrete more accurately.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS

In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...

full text

Lightweight Geopolymer Concrete with EPS Beads

Activation of class F fly ash with the 10 M sodium hydroxide and sodium silicate and its geopolymeric products were analysed under quasi-isothermal mode of DSC, FTIR and TG/DTA techniques. Before adding in concrete, expanded polystyrene beads were prewetted with the styrenebutadienestyrene latex aimed at to improve their bonding with geopolymer. Lightweight mortars/concretes were made from geop...

full text

Prediction of Lightweight Aggregate Concrete Compressive Strength

Nowadays, the better performance of lightweight structures during earthquake has resulted in using lightweight concrete more than ever. However, determining the compressive strength of concrete used in these structures during their service through a none-destructive test is a popular and useful method.  One of the main methods of non-destructive testing in the assessment of compressive strength...

full text

Modeling of Resilient Modulus of Asphalt Concrete Containing Reclaimed Asphalt Pavement using Feed-Forward and Generalized Regression Neural Networks

Reclaimed asphalt pavement (RAP) is one of the waste materials that highway agencies promote to use in new construction or rehabilitation of highways pavement. Since the use of RAP can affect the resilient modulus and other structural properties of flexible pavement layers, this paper aims to employ two different artificial neural network (ANN) models for modeling and evaluating the effects of ...

full text

Evaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network

Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 2

pages  313- 329

publication date 2019-04

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023